AD-A132 299 THE DESIGN OF BACKTRACK ALGORITHMS(U) NAVAL
POSTGRADUATE SCHOOL MONTEREY CA G LOBERG JUN 83

UNCLASSIFIED F/G 9/2 NL

iii‘|||l||i||l|IIIII\I|||II|IIIIII‘IIIIIIIIIIIIIIIIII‘IIIlIIIIIIIlIlIIIII

/s

L3
IS:;? lﬁ '2.5
fio £
s -
. Il
I
lizs s we

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANOARDS - 1963 - A

v

ADA132299

DTIC FILE CORY

i

NAVAL POSTGRADUATE SCHOOL

Monterey, Galifornia

THESIS

THE DESIGN OF BACKTRACK ALGORITHMS

by

Gary Loberg

June 1983

Thesis Advisor: Douglas R. Smith

Approved for public release; distribution unlimited -1“~§

« . iR
)
(:
83 09 09 057 oy ¢

SECUMTY CLASSIFICATION OF THIS PAGE (When Date Entorsd)
READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

NUM 2. GOVYT ACCHESSION NOJ 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (end Subtitle) = . S. TYPE OF REPORT & PERIOO COVERED
The Design of Backtrack Algorithms Master's Thesis
June, 1983

6. PERFORMING QRG. REPORT NUMBER

LiTuTuonm 8. CONTRACY GR GRANT NUMBER(s) |
Gary Loberg

9. PERFORMING ORGANIZATION NAME AND ADORESS 10. PROGR.AH ELEMENT, ’.OJECT,V
Naval Postgraduate School S i L
Monterey, California 93940

ll.\ICONTlIOLlf)ING o"lclélml AuoSAOI}:lnusl 12. REPOAT OATE
Naval Postgraduate Schoo 2
Monterey, California 93940 e, Lo

94
ITT. WONTTORING AGENCY NAME & ACDRESS(If different frem Contrelling Olllcs) | 1S. SECURITY CLASS. (of this report)
UNCLASSIFIED

1Sa. OECL ASSIFICATION/ DOWNGRAOING
cCHEOULE

T6. OISTRIBUTION STATEMENT (o1 this Repert)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abotrect entered in Blesk 20, i1 different irem Repert)

18. SUPPLEMENTARY NOTES

19. KXY WOROS (Centinuwe en reverss oide I nesessary and identily by block number)

backtrack algorithms, program synthesis, control structure
abstraction, problem reduction, state space search, graph
search

(30, ABSTRACT (Cantinue en reverse side If y and idenitly by block number)

The backtrack control structure is a well known combinatorial
problem solving approach in computer science. The strategy can
be abstracted into a program schema with slots for lower level
functions which is suitable for the automated synthesis of
backtrack programs. Employing a known model of program syn-
thesis based on a problem reduction problem representation, two
reduction rules are developed for transforming a (Continued)

'Sm, 1473 =oimion oF 1 NOV 3313 OBsOLETE
$/N 0102 LK 014- 6601

1 SECURITY CLASSIFICATION OF TNIS PAGE (When Dete Bnterec’

F 4

-

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entersd)

Abstract (Continued) Block # 20

problem specification into a backtrack control structure with
specification into a backtrack control structure with specifica-
tions for lower level functions. We illustrate these rules with
sample problems.

SN 0102- LF-014-6601

2 SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

Approved tfor Public Release, Distribution Unlimited

The Desigzn ot Backtrack Algorithms

by

Gary Loberg

Captain, Urited States Army
B.S., United States Military Acadery, 1973

Supmittea ir partial tulfillment ot the
requirements for tnhe degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June, 1983

Author: éffﬁ_ éémg

Approved by: m-h»;.ﬂ %;Ami

g 25;’ : Tnesis Advisor

.econc Reader

fam 7id Z/ jt/é‘ e

Chairman, Deparw gompuznr Science
\LpL&ka/ﬂ

Dean ot Intormation a ~y Scienc

ABSTRACT

" The backtirack control structure is a well known
combinatorial problem solving approaca in computer science.
Tne strategy can be abstracted into a program scaema with
slots for lower level functions waich is suitable for the
automated synthesis of backtrack programs. Employing a
Kaown model ot proéram syntnesis tasea on a pradlem
reducticn probdblem representation, two reduction rules are
jevelopelr for transformine a problem spe~itization into a
tacktrackx control structure witn specitications for lower
level functions. We {llustrate these rules with sample

problems.

L

I. INTRODUCTION

IIYs THE
A.

B.

ITI. THE

Iv. A B

&.

c.
D.
VI. CON

APPENDIX

TABLE OF CONTENTS

PROGRAM SYINTHESIS SYSTEM

TEE PROBLEM REDUCTION MODEL

PROBLEM SPECIFICATION -

THE PROGRAMMING LANGUAGE - -—

BACKTRACK CONTROL STRATEGY =

STATE SPACE SEARCE =
GENZRAL DESCRIPTION OF APPLICABLE PROBLEM =
GENERAL LESCRIPTION OF THE STRATEGY ——=—=——--

ACKTRACK REDUCTION RULE

SCEEMA DEVELOPMENT
DESIGN METHOD ¥OR SUBSCHEMA SPECIFICATION ==

THE K QUEENS PROBLEM

THE PROCESSOR SEQUENCING PROBLEM ——=——————=--

SCHEMA LIMITATIONS -

EXTENSION TO BACKTRACK
PROBLEM REDUCTION PROBLXEM REPRESENTATION ---
SCEEMA DEVELOPMENT =

SUBSCHEMA SPECIFICATION o =
A SIMPLE ARITHMETIC THEOREM PROVER ——————=--

CLUSION -

A - THE PROGRAMMING LANGUAGE

11

11

-

LIST CF REFERENCES - PR Ry S 91
INITIAL DISTRIBOTION LIST - 94

[0}

sl

19.
11.
12.
13.
lq,

15.

LIST OF FIGURES

K QUEENS Problem Representation ——=——==-- -————— e ——

General Backtrack Function -—-————————cmcmemeceaem———-

Backtrack Program Scnema -- - —_—

Reduction Rule Specification Scnemas -—--——=———————-

K QUEENS Problem Specitiration -—-—-———=-—-

E QUEENS Program Specification -- =

PSP Pro>l=am Representation - ——

ESP Preblefl Splelti@ationy = ESs=Ssssssseassesa s

PSP Proeram Speritication e

END/OR. GEAph (———==sf oo T e ee e es e

Solution Grapns - —

Tneorem Prover Problem Representation -——=————----

Bazxtrank Program Schema = = ==

Reducticn Rule Reguirements ——————————cemmec—e————-

Theorem Prover Program Specitication —--==--—-e-—-

&7
€7
£3
75

=9

I. INTRODUCTION

Tne backtrack control strategy nas developed into one ot
the major classes of aleorithms since its tirst appearance
in the 1literature of computation. This nhas been recognized
by many authors and most current t(eXt000KS on alzorithms,
including those by Anc, Hopcrotrt and Ullman [Ret. 1} and
Horowitz and Sanni [Ref. 2], include sunstantial sections on
tne strategy. Skill 1in the development of bacxtrack
algoritnms can be as useful to programmers as their skill
with otner general algorithm classes, sucn as tae 2ivide and
conquer, greedy and dynamic programming control strategies.
A minor 2o0al of tnis paper is to furtaher refine knowiedge of
the structural relationsnips witnin a oacktrack algoritam.

This expert knowledge »f bacKktirack programming
tecanigues can also be used im the program syanthesis
process. Tne problem reduction approach to program
syntnhesis detailed in Smith [(Ret. 3, 4]} employs r=duction
rules 1in tee form of algoritamic scnemas and supportine
neuristic «nowledge concerning sunscnema specification to
12compose a protlem specification to a series of simpler
specitrications. Program solutions to tnese
subspecitications are uitimateily composed via tne scnema
structure into a proeram satistyine the oriegsirnal

specifications. The major goal of this paper is to procuce

two such schemas for the packtrack control strategy and two
corresponding design methods for employing these scheras.

Tne first discussion of backtracx by Walker [Ret. 5] was
a tairly general description of a tecahnique then in use for
deciding combinatorial problems. Furtner descriptions of
the ta2chnique, such as Golomd and Baumert ([Ret. 6] ana
Bitner [Ret., 7] were oriented towards tne efficiency aspects
of the stratezy. Thils approach to the Study of backtrack
algorithms was reflected in texts on combinatorial
algorithms, such as that by Reinmsold, Nievereelt and Deo
fRef. ®8]. Wita this emphasis on the development of
specialized techniques for improving efficiency the study of
tne general properties of the backtrack class was
overlooked. The paper by Gernart and VYelowitz |[Ret. Yj
reversed tnis trend. Tney developed a series of bacKktrack
scnemas differentiatei oy tne type of control (recursive or
iterative) and tne type of solution (first, all or optirmal)
desired. Tae empnasis was on taoe development of scaemas
proven to be correct along with general speciftications for
the subschemas whicn would aid in proving tne correctpess of
the aleorithmns developed to complete the program.

This paper attempts to address two perceived gaps in tae
urderstandineg of backtrack alegoritnms. The first gap lies
in the d4evelopment of schemas in a notation sulitable for
automated program synthesis. This notation snoulad aliow for

simpler program veritication tecnniques than those used by

sernart and Yelowitz. The scnemas should also be accompaniec
by heuristics tor iastantiation of tne scaema to satisty a
2iven problem specification. Cnapters II, III and IV will
aidress these concerns by descriding tne program syntnesis
system (Chapter II), the characteristics of a bpacktrack
algoritham (Chapter 1I1) and a bDacktrack proegram scaema and
associated design method (Chapter IV). The secondi eap lies
in the extension of the backtrackK strategy to Solve a class
of problems wnich h1ave not generally been solved by a
backtrack control structure in the past. Chapter V will
develop @ schema and associated design method for searcrcing
a solution =zraph of a problem with a hierarchical
structure. Cnapter VI will conclude this paper and point to

further areas of research.

19

II. TEE PROGRAM SYNTEESIS SYSTEM

The program syntnesis model for tnis research 1is tne
problem reduction approacan as developed by Smitn {[Ref. 14,
11]. This approach is an attempt to tormalize tne
programmine discipline ot top down desien as a nierarchical,
problem reduction structure. 4 oriet examination ot this
model will nelp identify tne type of knowiedage required to

syntnesize a backtrack program.

A. TEE PROBLEM REDUCTION MODEL

The key concept {in this model is that proeram
development by top down design is a probiem reauction
approacns to tne programming provlem. Top down design 1is
accomplisned tarougn successive refinement of a2 problem
specitication into a series of simpler subspecitfications.
These subspecifications are related tarougn control
structures whicn d4irect control tanrough tae subprograms. At
each step of tne refinement process tne csubspecifications
Yrom the previous step are furtner retined. Tais continues
until all are replaced by tne primitive constructs of tne
programmine language. The entire prozram is then composed
from tne primitive languagee constructs ana control
structures produced during trhe refinement stages.

A provolem reduction protiem solving approach attempts Q

solution by applyine reduction operators to & problem goal

11

-

statement. These reduction operators decompose tne goal
into a number ot simpler subgoals and additionally provide a
framework for composing the solutions to the subeoals into a
solution to tne original problem goal. Also required 1is a
set of primitive operators which allow direct solvineg ot a
subzoal. Bf’ successively decomposinz a problem until a
primitive operator can be applied to each subgoal anrd then
composing these soiutions with the structure provided by the
reduction operator, a solution to the original problem is
found.

The analogy between rroblem red ction problem solution
and top down design is obvious. The goal statement 1in a
program syntnesis system is a formal specification of a
problem. A primitive operator of a pro2ram synthesis system
is a proerammine laneuaee construct. Tne reduction
operators include a procedure ror developing
subspecifications (desizn strateey in Smitn ([Ret. 12),
design method above) and a structure for composition of the
subspecification solutions. The structures chosen ¢ftor the
reduction operators are program schemas wnhich reflect tae
different control strategie<., Thne proeram syvnthesis problem
is to develop a program scnema/design metnod pair wnich
allows syntbnesis of correct programs,

A simple example should help 1illustrate this process.
Suppose our specification requires the selection of tae

maximum of two natural numbers given as 1input. Tne goal

12

te

-

specification may look like:
MAX(A,B) = C such that -
[(AD>=B <=> C=A] &
(B>A <=> C=B)
where MAX: (NxN) => N
This specification for a function named MAX states tnat MAX
takes two natural numbers as input and returns a single
natural number, Tne logic specitication consists of a
conjunction of two clauses. Each clause must therefore be
true for the output to be correct. Botn conjuncts are
logical -equivalences, which requires both sides of tne
equivalence to be true or both sSides talse ftor tae
equivalence to be true. Thus we have a speciftication {in
wnich if A>=B, C must equal A, and if B>A, C must equal B.
Thus C must be tne maximum of A and B. If our programmineg
language nad a suitapnly defined <function MAX(X,Y), then a
primitive solution to this Zo0al could ve applied. It not,
tne goal must be furtner reduced to allow for solution. One
reduction rule wnicn could be appiied is a simple
conditional. ¥itn this rule a control scaema would be
imposed and subspecitications would te developed ¢tor tne
schema slots. The schema may look like:
1 P
then F
else G
Wnere P, F, G are functions the rule will specify. Tne

specifications produced by the rule may pe:

13

-

P:(A,B) = b such that
[A>=B <=> b}
vhere P:(NxN) => B

F:A = C such that
(A = C}
where F:N => N
G:B = C sucho that
(3 =cjJ
where F:N => N
With these specifications P can pe directiy solved by a
simple relational operator and F and G can te solved by an
assigznment operator, and the final program produced will be:
MAX(A,B) =
1# A>=§
then C <~ A
else C <~ B;
return C
B. PROBLEM SPECIFICATION
The program synthesis system requires a formal
specitication of a problem. This formal specification is a
logical description ot the {input/output relationships for
the program. The folliowing format will bde used to specity
problems in this paper:

F:x = z such tnat I:x => 0:<{x,z>
where F:D -> R

In tnis instance, F is the name of the specification and the
¢ operator indicates function application.

There are four components to &8 formal specitication.
The 1input <condition I details all xnown properties of
objects 1input to the progran. If tne input condition

applied to some obdbject x is true, then tThe program must

14

produce tne specitied output. In many cases tne input
condition will be vacuously true. The output concition O
specities the relations tnat are expected to nold petween
the input objects and tne output objects. Tne domain D
speciries the data type of input objects and tre range R
specifies the data type of output objects. The program
synthesis system will attempt to derive a program F waicn
takes as 1nput an odbject of type D and produces as output an
object of type R, If tnis input object satvistfies the input
condition then the output conaition applied to the input aznd

output objects will be true.

C. THE PROGRAMMING LANGUAGE

The target programmine language tror this system 1is a
functional language similar to Backus’® FP notation (Ret.
13). A functiomal language providges several advantages to
the proeram syntnesis process. Tne most significamt is tne
relative ease of program verification. Althougnh not a
trivial tasx, the prootf tecanijues are more manageable than
those for procedural languasees. The principal reason tor
tais 1lies 1in the nature of expressions. A4 tunctional
program constitutes a sSinzle expression. Within tanis
expression all occurences of a name or subexpression have
the same value, Thus the Statement by sStatement State
chranges witnin a procedural language wnhich create most ot
the difficulty in program verification do not exist witn

tunctional programs. Tnis permits an algeora of functional

15

—

e —

k4

programming, as Backus further discusses [Ref. 14)] wzicz
permits use of the language as a proof tool. A second
advantaee 1lies 1in tne nierarcnic nature of functional
languages. Higher level functions are constructec from
lower level ftunctions and appropriate combdining functionai
forms. The reduction rules in the syntnesis system are
actually metncds for producing specifications for lower
level functions and scnemas waicn conpnect tne specifications
with the appropriate combinine forms,
4 functional language contains a set of tive components

(Ref. 15), wnick are:

1. a set of objects

2. a set of functlons

3. the application operation

4, a set of functional torms

5. a function detinition mechnanism
The functional languaze used is tully descriced in Appendix
A. Tne following paragrapns aighligat the major daifferences
between Bacxus’ notation and tne language notation used.

1. Set of Oblects

The set of objects in tnis language include specitic
data types. The particular data types whican will o©pe
necessary in tnis paper are N, the natural numpers, LIST(N),
lists of natural numbers, I, the integers ana B, the boolean
values true and false. Also includea is tne data structure

<>, sequences of objects.

16

2. Set of Primitive Fupclions

Tne set of primitive ¢tunctions are tied to the
various data types and structures. A complete set of
functions 1s given in Appendix A.

5. 1Ihe Application Operation

Function application is enhanced by allowine the use
of named parameters in botn the application and detinition
of functions. This deviates greatly from Backus’
intentions, btut obviates much of the use of selector
functions in data manipulation. At the least 1t increases
toe clarity of function definitions. A further motivation
is the xnowledge tnat efficient algoritams [Ret.1€] exist to
extract 2named parameters from function detinitions. A
declaration mechanism {is also 1inciuded to allow tor
controlling name visibility.

4. The Functiop Detipition Mechapism

An anonymous function definition mecnanism, similar

to the LISP lambda tunction, is included. The syntax 1is:

(1ambda <parameter list>

{function definition})

(actual parameter list)
This will be most usetul for schema expressicn, as it allows
tfor tfully specifyine a lower level function witain a nigher
function. In the backtrack scaema we shall use tnis feature
to express a lower level function in terms of its component

functions, tnereby directly expressing all compornents of tne

packtrack strategy and their relationships.

17

II11. THE BACKTRACK CONTROL STRATEGY

The backtrack control strategy is essentialily a
technique applicable to combinatorial problems. A backtrack
algorithm will conduct an unintormed search ot a state space
to select those states whizh satisty the problem
constraints. The advantage of a backtrackineg aleoritam over
other uninformed searcn techniques is that it can employ the
problem constraints to prune tne state space tree, tihus

reducing tne amount of search reyuired.

A. STATE SPACE SEARCH

A state space problem representation attempts to detine
a problem tarouga aescription of the various states of the
problem worid and metnods in tne protiem woria for
transforming 43 given state {nto Aa new state. In the
computer solution ot state space problems tne funaamentat
concepts are the symbolic representation ot the relevant
aspects of the problem state andi the computation of
permissiole state transtormations. These permissible
transformations are problem world related in that they
represent transformations tae problem world wouli permit.
For example, a permissible transtormation may well lead to a
problem state which violates a <coastraint, obut 1is an
atlowable action 1in the world veing modeiled. The solution

technique most otten used to solve state space problems 1is

18

some torm of Search. Tne search commences at a given
initial state and proceeds throueh a directed erapa,. where
the grapn nodes represent the possible states and the arcs
represent the permissible transformations. The search
terminates wnen a goal state 1s reached.

An illustrative example 1is the missionaries and
~annivbals prodlem. In tnis prodlem we are given an equal
number ot missionaries and cannibals on @& river bark and a
boat which can hold at most two persons. Tne gonai is to eet
all missionaries and cannibals to the other bdank without
leavirg more cannitals than missionaries on either tang at
any time. To represent this problem with a state space
representation we must identity the relevaat aspects of
state and develop a symbolic Trepresentation tor them. We
must also develop routines to compute allowable
transformations between state descriptions. Thne solution to
this problem will be a sequence of transformations which
move the missionaries and cannibals from one obank t0 the
other and whicn do not violate the problem constraints.

A number o2t techniques exist for searcaing state space
grapas. They difter principally 1in tne techaique used for
selecting wnicn already visited state to expand, or to
transform to 32 new state. Uninformed techniques such as
ieptn first, breadth first and generate and test searchn
tranpsform known states in an arovitrary and fixed manner.

The bacxtrack strateey, as we snall see, is an exampie of an

19

-

uninformed search. An 1informed technique, sucn as btest
first search, will use some type of Knowledge to evaluate
the known states and select the most promisine of these tor
expansion. Tne decision of wnetaer to use an informed or
uninformed searca is most often a function of tne proolem

and now well search Knowleige can be coditiea,

B. GENERAL DESCRIPTION OF APPLICASLE PROBLEMS

Backtrack is suited ¢tor the solution ot ~omdinaterial
problems wnich exhibdit certain cnaracteristirs. These
cnaracteristics 1include the ability to segment tne problem
into a set ¢t discrete bdut interrelated decisicas, a
solution structured as a vector ot decisions, and & set of
testable solution constraints which ©relate the a2ecision
elements.

l.

1o

rotlem Characteristics

Representation of a problem as a set ot
1iscrete decicsions structures the prodlem intec a trea s=ar-h
probiem. Each node ot the tree represents a decision to be
made and eacn arc from that node represents a different
alternative solution. In tne missionaries and cannibals
problem a node may represent the decision: wro ge2ts ia the
boat to 20 to tne opposite river bank? Eacn arc represents
3 4ifterent alternative: one or two missionaries, one or two
cannibvals or one missionary and12 one caanibal. By forcing
this tree structure onto the problem, backtrackine

algorithms do nct nave to bde concerned witha maintenaace of

20

solved node lists or other storage outside the patn fror the
current node to the root of tae tree, In fact, tae state
space tree is implicit in backtrack algoritams azd not
explicitly stored.

Representation of the soluticn by a vector ot
decision solutions corresponds directly to the path in the
state space tree explicitly stored at any time by a
backtrack algoritam. Ia our stats space model this path {is
the current state, This direct solution representation
precludes a requirement to coanstruct a solurior once tne
search nhas concluded.

Tne problem defined constraints on soluticn element
relationsnips allow backtrack algoritams to test trhe current
sequence of decisions {(patn from root to current roae) and
prune the implicit searcn tree witnout explicitiy examining
all nodes of the tree. Tae time efficiency of a tacxtrack
aleorithm, measured by tae number of nodes examined, is a
function of now well rorstrained these relationsnips are.
The tiehter the constraiats, the less naodes will bYe
examined, Without comstraints, tae algoritnm will examine
all nodes of tne state space tree.

2. K QUEENS Problem Represeatation

An example representation will 11llustrate now a

simple combinatorial problem can be represented tor solution
by a backtracx algorithm. Tne prodlem, traditionally used

to explain Dbacktrack, is tne K QUEENS prosdlem. Simply

21

stated, tne X QUEENS problem 1is to tind all possible boarc
positions on a KxK crnessboard for KX queens such tnat no
queen attacks any otner queen. From tne rules ot caoess, we
must find all positions such that no two queeas are on thne
same row, on the same column, Oor on the same diagonal.

To represent this as a series ot decisions we note
that no two queens may be on the same row. Also, it we are
to place K queens on a KxX board, there must be at least oae
queen on each row. It follows that there must Bbe one aad
only one queen on each row of tne board. Theretore, tae
decision to make at level i of the tree is where to place
the queen on row i.

The solution vector returned will be a path trom the
root to a leaf of the tree. Position i ot tne vertor will
represent the positioning of the queen on row i. Tnus the
solution will nave tne form

T & &0 3(@)e sas o (E))
where eacn x(i) is tne position (coiumn numoer) ot the queen
on row 1.

The constraint relationships can also be etarrired
from the rules of cness. These <constraints retflect tae
facts that ©Ro two queenS can be Oon the same «column oOF
diagonal. To -express the columa constraint in a computable
form we note tnat our representation would depict two queens
in the same <column as two elements of tne solution vector

having the sane value. e can restrict this witn the

22

constraint:
column constraing -

FOR ALL x(1),x(j) IN X

(L= => x(1)#x())]
Tne diagonal constraint is a 1little more difficult. Two
queens are on the same diagonal 1f their row distance is tae
same 2s their column distance. For example, queens at Trow
and column positions (1 4) and (3 6) are on tne same
1iazonal as are queens at positions (1 4) &nd (2 2). We can
thus subdbtract the gueens’ Trow aumbers and column numbers and
then compare their absolute values to determine i¢¥ they are
on tne same diagonal. This gives us the Jdiaeonal
constraint:

diagonal constraint

FOR ALL x(i),x(J) IN X

[1#J => abs(i-3)#abs(x(1)-x(3))
One final constiraint identifiec a path as a solutior and
thus may bde termed a solution constraint. This constraint
is identified by the fact that K 1ecisioas must %e made to
place X queens on the board. A computable sclution

constraint is thus lengtn(X) = . The complete

representation is given in Figure 1.

C. GENERAL DESCRIPTION OF THE STRATEGY

Backtrack 1s test detined as an unintormed, exhaustive,
deptn first tiree search strateay. The strategy 1is
uninformed, 4in that it does not employ ;robler specific
gnowledge atout how to searcn for a solution state, It is

exhaustive in trat it will implicitly or exvlicitly examine

23

all possible solution states as 1t executes. It is a iree
search strategy because it implicitly structures tne problem
into a tree which represents solution states by a path from
the root to a leaf. It 1s a depth first strategy because it
fully examines a subtiree defined by one alternative before

it begins examination of the next alternative.

DECISION STROUCTOURE
decision(i) = column placement ftor queen on row i

SOLUTION STRUCTURE
{X> wnere eaca X = (x(1), x(2), ... ,x(K})
wnere x(i) = column number for gqueen on Tow i

CONSTRAINT STRUCTURE
element constralints
FOR ALL x(1),x(J§) IN X
(125 => x(i)#x({)]
(1%} => ads(i-j)#abs(x(i)-x{jV)]
(1 <= x{1) <= K}
solution constraint
lengtn:X = K

e e S S e S e |

——

FIGURE 1
X QUEENS Problem Representdation

A backtrack s%ratagy attempts 0 construct a solution
vector one element at a time, After decidine on one
element, tne strategy will expand this solution one element
furtner, If the strategy determines n0 expansior is
possible and a complete solution nas not vteen achiavea tnen
it will bacgtracg, change 1its most recently macde decision,
and try to expand the new partial solution.

To implement this Sstrateey, a Dbacktrazg alesorithm takes

as 2an 1input parameter a description of the patzr ¢trom the

24

root of tae state space tree to the node bteine expanced.
The algorithm will expand this node by creatine dqescriptions
ot all possible patas from the Toot through the exparded
node with leneth equal to one greater than the parameter
patn. Tne ailgorithm will then examine these new paths in an
ardbitrary order. Tnis examination first tests the path for
a solution and returns tae pata if it 1is founa to be a
solution. If not a solution, it tests for any violation of
a predefined subset of the Dprsbdblem constraints, If a
violation is tound, the aleoritnm determines no solution can
be found with further -exploration and terminates search on
tals path and all possible extensions. If tnhere are no
constraint violations, the path i1s recursively expanded to
search for a solution deeper in tne tree,

Recursion {s the natural ¢torm of expression Hoin
backtrack aleorithms. Usine standard program
transformations Forowitz and Sahni [Ret. 17| aaa Gernart acd
Yoelowitz [Ref. 18] nave developed iterative backtracKkiae
procedures from their recursive alzoritams. Trhis paper,
since 1t 1s not concerned with efficiency 1lssues, wilil
develop algoritams and schemas in recursive 12aotation ana
l2aave for later program transformation work tne translatinm
into fterative notation. Witn tnis in mind, Figure 2 gives
a simple backtrack runction in a procedural notation.

The efficiency of a bacxgtrack alzoritam principally

depends on how tne patn element corstraints contaired in the

25

predicate FEASIRBLE are defined. The pruning efficiency ot
the predicate 1is directly related to tre degree of
constraint being tested. Tne more constraining the
relationships, the more pruning will ©be accomplisned. As
iiscussed above, the pruning constraints will often be a
subset of the total problem constraints. For these reasots,
a good neuristic 1is required for selectinz tnhe appropriate
constraints 1f a =gooda Dbdacxtracking ailgerithm 1is to ¢te
ieyeloped by a programmer or an automated synthesis systam.
A syntnesis design method based on such a aeuristic is thus
desirable.

The computation ot tne predicate FFASIBLE nienlignts one
further characteristic ot the strateey. The relationships
expressed in the predicate otten involve data about tae path
elements. This data must be visible to the predicate, wnich
normally implies extensive parameter passing at each call of
the function. The data relevant to each element of tnre path
is very often static, nowever. The data car be seea as
properties of tne separate elements, and the constraining
relationsnips as relationsnips between the elements”
properties. For this reason, many backtrackine aleoritams
establisn these properties as global cata, weich can bte

accessed from any level o2 tne recursion.

26

PROBLEM (PARM_LIST) <- BACKTRACK (NIL)

! where
FONCTION BACKTRACK (PATH) is detined as

ALTERNATIVE_SET <- GENERATE (PATE,PARM_LIST)
/* generdate is a function which will return all
extensions to PATE */

- ———

SOLOTION_SET <~ {};
! FOR P IN ALTERNATIVE SET DO

IF SOLUTION (P)
TEEN SOLUTION_SET <- SOLUTION_SET U {P}
] /®* solution is a predicate which returas
true it the parameter is a solution
to the problem */
ELSE
IF FEASIBLE (P)
g THEN SOLUTION_SET <-
SOLUTION_SET U BACKTRACK (P);
/* feasible 1s a predicate wnicn returns
i true if the parameter can be expanaed */

END FOR;
RETURN SOLUTION_SET;
END BACKTRACK

FIGURE 2
General Bacgtrack Function

The aleorithm descrived above is a simple description of
a backrtrack strateey which returns all solutions in thne
problem defined state Space. Two otaer variants of
backtrack often arise. The tirst variant is a strateey
waich returns only the tirst solution discovered. The
second variant returns only the best solutior encountered,

wnere tne solutions nave been crdered by scme scoring

27

function. Both of tnese variants require additional control
teatures wnicnh complicate tne basic backtrack strategf? and
will not be further discussed in this paper. For trose

interested, Gernart and Yelowitz ([Ret. 19) provide furtoer

discussion of this topic.

28

IV. A BACKTRACK REDUCTION RULE

A reduction rule for implementing a backtrack aleorithm
nas two components, the program schema and tne design method
for subscnema specification., This chapter develcps a schema
for a simple bdacktrack algoritam witn <lots for three
subalezorithms. A design metnod s <tnen precented for
reducineg the problem specitication into subaigorithm
specitications. Tne metnod 1s obpased on an examination of
the required relationships of the three sudaleoritams. Two
problems are then examined to illustrate the application ot

tne reduction rule.

A, SCHEMA DEVILOPMENT

Ir developing a program scnema one approeca is to
describe completely tne expected d1ipput to the schema, the
jesired output ¢trom tne scnema and tne series of
transformations on tne 1input <the scanema is rejuired to
perform to produce the output. These transformations can
then bte translated {into lower level tunctions coranected by
tne language combining forms. The following paragreépns
derive 3 schema in the desired tuncrniondal language using
this procedure.

1. Tne Expected Input

From the general discussion of the backtrack

strategy (see page 23) we can iescribe <tne expected 1input

29

and i1ts salient characteristics. Wnen a backtrack tunction
is invoked it 1s passed one parameter, a vecior
representationr ot a partial socluticer to the probiem. e
will call this vector PATH, since it is a path trom tne root
of the state space tree to the last node (last olement of
the vector) examined. PATH is ot unknown lenetz, since the
function is called at every level of the state spaze tree.
A null PATH can also exist, wnich 4indicates 1no cecistozns
have yat been made. Tnis is tne problem state wnen the
initial invocation ocrurs.

Altnougn tne lengtn of PATH 1is unxnown, taere are
characteristics wnich can be inferred. Tae most signiticant
is tnhat PATH nas been determined not to be & sclution. If
the previous invocation of tne function nad determined tnat
PATH was 3 solution then tne function would nave terminatec
prior to the recursive invocation we are zoncerned wita. A
second characteristic is that PATE meets the test ot the
predicate fteasibdle,. A major assumption of this desigen
metncd is the conclusion that altaough PATH may not satisty
all tne output conaitions required vy the prevlem
specification, it satisfies a major suonset of the
conditions, Furtnermore, there is reason to =2xpect that an
expansion ot PATH will eventually satisfy all tne output
conditions. Tne current backtrack invocation must theretore

searcn for all sucn expansions.

§ —

Another input issue concerns the problem d4ata which
will ©pe required by the 1lower level functions.- The
assumption made in tne development of this paper 1s trnat
this data will be made global. Figure 2 (see page 27)
demonstrates how this 1is accomplisned, A1l prog&ram
specifications developed wiil declare this data as a
parameter to the proeram, then declare the BACKTRACK
function and lower level tunctions at the same scope level,
providiing tne required visibdility. The alternative is to
ieclare the data as input to BACKTRACK ana pass it as a
parameter to every recursive call of the function. In trhe X
QUEENS example tne only data is the value of X. The cost of
passing tnls parameter will be minimal. Iz other examples,
such as the Processor Sequencing Protliem we discuss later,
the data is much more extensive and tnhe parameter passinrg
costs are higher, In any case, it is simpler to consider
this data as global and not pe concerned with the mechanics
of creating parameter itists.

2. 1Inhe Desired Output

Tae output ¢from a tacktrack alezorithm 1is also 3
path or list of Dpatas. These patas, 1in vector rorm,
represent all possiple solutions to tae oprotlem, Bach
invocation of tne obacktrack tunction examines a suotree of
the state space tree to searca ftor amn extenstor to PATH
wnicn terminates in a solution. Tae snorter PATE 1is thne

desper the subtree examin2d will be., In any subtree tnere

31

is a possibility of zero, one or more solutions wnicn will
be returned to the 1invocation examinine that subtree. The
backtrack function must compose these separite path
solutions into a 1list of subtree solutions.

3. Input Transformations

The 1input transformations are also apparent from
the strateey description (see page 23). Tnere are tanree
transformations to perform, The ftirst of tnese is an
expansion of the current partial solution by one additional
decision. At the simplest level this transtormation must
produce a set of all paths which are possitle =2xpansions of
PATH, Eacn path in this set Trepreseants expansion of the
partial solution by one additional decision element. Eaca
possible decision is represented by & corresponding elemeant
in the set. The result of tnis transtormation is a set of
patns to be examined.

The second transformation is to execute & series of
conditional tests. Tnese tests perform tne examiration of
each path produced bty the first transformation. The
sienificant characteristic of tne strategy is tnat the tests
and resultine action are completed for eacn patn bhefore any
processine beeins om any otner patn, We will <call the patn
under consideration TEST_PATH. The tests and actions can be
subdivided into two sets. The first set tests ¢f¢or a
solutiosn, If a solution is discovered, the action 1is to

reture TEST_PATH. If tne first test fails, the second set

32

-

tests for teasibility of expansion. If this test deci:zes
expansion {s feasitle, tne tacktrack function is recursively
called with TEST_PATH as the parameter. If the test tfails
no further expansion 1is fteasipnle and the 1il path 1is
returned to signify no solution is found.

The final transformation is required to eliminate
the nil patns in tne solution once all expansions nave teen
examined. Afrter this transtormation 1is corplete, the value
returned will consist of a list ot solutions.

4, Scnema Translation

Translation into a program schema requires grouping
desired traasformations 1into lower level functions and
specityine the appropriate functional forms for relating the
inputs to and outputs from tne functions. Tne atility to
separate the backtrack strategy into three transformations
of the 1input 1implies that we zan detine three lower level
functions to0 perform the transtorms. The tollowing
paragrapns develop these tanree tunstions and the proper
combining forms.

The first transformation operates on tae input to
the scnema, the parameter PATH. Thls allows specification as
a direct function application to tne parameter. Tae output
of this application is to dbe a List of ail patns wnicmn are
expansions of PATH. Since the operation is to generate all
possible expansions, we will name tnis fuaction GENERATE. In

our language notation this is: GENERATE:PATH.

33

The second transformation operates on tane output ct
the tunction GENERATE. 1Its metnod is to operate on an
element, return a value, operate on tae next element, retura
a value and continue until tne list providea by GENERATE is
exhausted, This operation is clearly an example of the
APPLY-TO-ALL functional form available in our lénguaee,
Since the operation is a test of each elemeat of the list we
will name tre tunction TEST. In our laneuage notatiorn tais
is:

ATEST(GENERATE : PATH)
We know more about the behavior of the tunction TEST,
however, TEST is a conditional <function with Two
predicates. We can furtner specify TEST witain the scrhema
by employing this knowledge. Tne tirst predicate 1is a
solution test. The resulting action is to return tne path
if the predicate holds. In our laneuaee this is:

SOLUTION:TEST_PATH -=> ID:TEST_PATH;
Tne second test is a check for feasibdbility. The action is
to recursively call tne backKktracg tunctiosn with the pata as
parameter. This can be expressea in our language as:

FEASIBLE:TEST_PATH -> BACKTRACK:TEST_PATH;
The final action of the function is to return ail. The use
of an anonymous function definition will allow definition of
TEST within the schema as follows:

A(1ambda{TEST_PATHD

{ (SOLUTION:TEST_PATH => ID:TEST PATH;
FPEASIBLE:TEST_PATH ~> BACKTRATK:TEST_PATH;

NIL)})
(GENERATE :PATH)

Tne tinal transformation eliminates all null lists
in the 1i{st returned by tne partial schema avove.- Tne
appropriate lower level function and combdbinine torm already
exist in our laneuaee. The functional form INSERT will move
the function APPEND throusgn tne list and eliminate ail rull
list ocrcurencas, All that i{s required is to r~ompose this
function and combinine ftorm onto the partial schema to

produce the packtrack scnema of Figure 3.

BACKTRACK:PATH
/APPEND
(X (lampda<TEST_PATHD
{ (SOLUTION:TEST_PATH => ID:TEST_PATF;
FEASIBLE:TEST_PATH -> BACKTRACK:TEST_PATH;
NIL)})
(GENERATE:PATH))

FIGURE 3
Backtrack Program Scnema

B. DESIGN METHOD FOR SUESCHEMA SPECIFICATION

The schema developed above is only one component ot tae
required reduction rule. Also nrecessary is a d4esizrn metnoa
for specifying the lower level tunctions GENEPATE, SCLUTION
ani FEASIBLE. A rule tor derivation oY these
subspecifications must de based on tae expected input and
output of tne functions and the relationsnips between the
functions wnicn tne scnema exploits to sclve tne pretlem,
The reduction rule developed in tne ftollowing ©paragrapas
builds from tnese relationsnips. Tae rule »provides a

specirication schema ror each tor eacn lower lLevel tunction

35

and a method tor {astantiating the scnemas ¢tor a eZiven
problem instance. The method iS & pattern matcanlng process
which replaces retferences t0 the problem specificatinn in
the schemas with the retferenced components otf the problem
specification. In developine tne schemas the notetioa used
below is the same as the problem specitication notation,
with two additions: Capital letters reter to the compornents
ot the specification and Llower case letters reter to the
function or problem specification. Thus Op reters to the
output condlition of tne problem specification, wnile 0s, Of
and Ogz retfer to the output conditions of the fucctions
SOLUTION, FEASIBLE and GENERATSE respectively.
1. GENERATE Specification Schema

To derive a general neuristic rar specityinz the
SENERATE <function we need to closely examine the output
requirements tor the function. BacKtrack requires GENERATE
to produce all single decision extensions to PATE. It 1is
significant tnat GENERATE is tne only functior in tne schnema
whiczh produces output. E&ch element of tnis output 1is a
potential solution. Tne implication is tnat GENERATE must
pertorm all computation required to const uct & decision
element and append it to PATH. This computation may require
incorporation ot <constraints from the problem output
condition. The K QUEENS problem provides a simple example.
In this problem there i{s & direct constraint on tne value »¢

the decision alternatives, tnis deine that the column numter

36

tor each decision must be between one anda K. Fatiure to
include this ~onstraint in GENERATE may result ia the
production of an intinite sequence otf path extensions.

A heuristic to support this reasoning can be
designed. It a constraint exists wnich ©places dire-t
restrictions on tne computed value of a decision element
then tnis constraint snould be includeda in the specification
for GENERATE. Wnat constitutes a direct restriction” is not
well formulated, but two general principles are offered. If
a constraint restricts a decision element Dby a specified
relation to constant values, then tais 1is a direct
restriction. The K QUEENS constraint abdove talls in tnis
cateegory. Secondly, if a constraint 1is formulated as an
equality between a decision element and a computatle value,
taen the constraiﬁt directly restricts the decisicn. we
will show an examp}e of this later. On a more &eneral note,
the issue of whaich function to 1include constraints in is a
ma jor point of concern to algoritam designers and 1is furtaer

addressed in the section on schema Llimitations.

&)

Tnere are otner output conaitions for tne GENERAT

Yuactioa. Ir GENERATE is to produce sinele deci:zic

=]

extensions to PATH then the length of eacn element of tre
output must be oné greater tnan the lengtn of PATE. Also,

2ach element ot the output minus its last cdecision 1< eqgual
to PATH. A clean symmetry exists between these constraints.
/

We nave restricted the size of each element of the output,

37

the value of the last decision of each element, and the
values of the rest of the decisions. Trnis suggzests a
completeness in tne specification. Tre complete ocutput
condition Og can be expressed as:
Oz = FOR ALL TEST_PATH 1IN PATE_LIST

(lengtn (TEST_PATH) = 1+lengtn:PATH &

t1r(TEST _PATH) = PATE &

Ope(last(TEST_PATH)))

where Opg = subset of Op whicn directly
restricts a decisiosn

There are certain conditions gnown to be true of the
input. As 2iscussed in the paragrapa on schema develorment
PATH is known tn te feasible. Tnis fact may bte used by tae
syathesis system and needs to be represeanted as ar input
conditiion. The sprecitication iaput cordition is tonus:

FEASIBLE(PATEH)

To derive tne dorain ana ranee ot GENEIATE we reeda
to examine tne relationships between the input and output or
tae function anc tanse of the proslem. Generate azcepts as
input a path representation for whicn it 1is to 3zererats
allowable expansions. Although not a solution, PATH is the
proper type 9f 2 solution. We can discover the solution
type by examining tne range of tae probiem. Tne prcblem is
to produce a sequence of solutions, Tne Trarge of tne
problem is taus a seyuenrce of tne desired type. Giver a
problem range of <Y>, which signities a seguence of objects
ot type Y, where ! is a languaze type we can extract Y as

the domain ot GENERATE. Tnhne function must output a seyuepce

of objects, each of whicn is a potential solution. This is
tae same output type as tane proslem and the proroiem-range
can be substituted for tne range of GENERATE. Tris produces
a domain and range specitication or:

Dg = Y wnere Rp = <>
Rg = Rp

Tne complete specitication scnema is givea in Figure 4.

2. SOLUTICN Specificatisn Schnema

Tne function SOLUTION is the simplest ¢t .tne lower
level functions to specify since it relates directly to tae
antire problem specification. SOLUTION is a function which
accepts a path representation as input aud raturns a tooiean
value., The representation SOLUTION tests is the same tyvpe

as the elements of the problem domain. In the ¥ QUEENS

problem, for example, the problem range {is <LIST(N)I>. ve
want tgoe program to produce a sequence ot lists, where eica
list is a3 solutioc. The correspondice domain tor SOLUTION
is simply LIST(N). Since the function is a predicate, it
TUSt Treturn a8 Yoolean value. Tne domain aad ranee can thus
be specified as:

Ds = Y wnere Rp = <¥>

Rs = B

To derive the input 3and output specifrfications #&2 note tnat
SOLUTION must return true when the protlem output conaitisas
applied to tne parameter TEST _PATE are true and must return
false wnen thae problem nutput concditicns appliecd to the

varareter are false, This can be expressea 4as a logical

-

equivalence between tnhe boolean value returned anc tne
problem coastraints applied t0o tne parameter TEST-PATE.
Since some ot the constraints may be included in GENERATE,
we need only include the subset not in GENERATE. Tne input
condition tollows ¢from the 1input condition to GENERATE.
Since the input to GENERATE is known to be teasible, the
input to SJOLUTION minus the last element must be feasible.
Tne input and output conditions may be expressed as:

Is
Os

FEASIBLE(tlr:PATH)
Ops({TEST_PATH) <=> b

where Ops = subset ot Op not iacluded
ir GENERATE specitication

The complete specification schema is given ia Figure 4.
5. EEASIBLE Specifization Schema

The specification ot FEASIBLE is more ditrticult than
tnhat tor SOLUTION opecause the feasibility test is the less
coanstraining of the two. An assumption of tnhis desien
metaod is tnat FEASIRBLE is a relaxation of the ~onstraints
represented by SOLUTION., One rule for relaxing restrintions
is to eliminate one or more expressions within a conjunctive
statement o0f constraints. We attempt to develop a neuristic
tor 1identityine which conjunct or sonjuncts ot the
constraints stated in the problem output ~onaitions to
include in tne feasibdility test.

Tne backtrack schema expects certain caaracteristics
of the path bdeing investigated. A path which is teasiole

yet not a solution fails to meet onhe or more of the output

490

conditions. However, it is fteasible that an expansiocn of
tne path may meet 3ll tae output conditions. A. path
letermined to vte unfeasidle also fails to meet one or mere
of tne outhut conditions. The «differerce 1s that an
unfeasible patn will never meet all the output ccnaitioens,
no matter what sequence cf decisions is appended. If we can
specify the type of condition wnicn, wnen failea by a
partial solution will also be tailed by any extension to
that partial solution, then this kKnowledege car be aaded to
cur reduction rule.

A heuristic can be feormulatea tTo express this
Enowledgze. A constraint whica addresses tne solution as a
whole is not of tnis type. 1If tme pata as a single entity
tails a condition, then any expansion te tae patn produces a
iitferent entity, and may pass tae condition. A constraint
whica limits the relations between tne parts of tne solution
is ot tais type, nowever. £ a partial sciution exnivits a
contlict betwaen twe elements the same confiict wiil erxist
re matter what subsequent elements are appended to tae
path. The conclusion 1s tnat tne appropriate constraints
are a subset of the problem output conditions ani can re
selected by an heuristic process which retains only those
constraints whicn relate elements of the proposec solution.

Tne input and output conditions can be expressed as:

41

L
or

FEASIBLE(tlr:PATH)
Opt{TEST_PATH) <=> »

where Opf = all conjuncts of Op whi-zh
relate elements ot TEST_PATH
and are not in GENERATE

Since FEASIBLE is a component of tae same

conditional expression as SOLUTION, tne domain remains tne

same, Since it is also 2 predicate, the ranee remains the

same.
Dt = Y where Rp = <Y
R = B

The complete specitication schema is given in Fisure 2,

C. TEE K QUEENS PROBLEM

Cur ¢rirst example to illustrate tne use of this
reduction rule will bve the K QUEENS prodblem discussed
earlier. The format to de tollowed in presentine tnis and
later problems will be to represent the problem with the
structure in Figure 1, Zevelop a formal specificaticn ot tne
problem, and tnen apply the reduction rule of trhe two
previous paragrapns. Tne soutput will be a program
satisfying the prodlem in the form of the backtrack proeram
scnema witn formal specifications for the lower level

tunctions.

42

GENERATE SPECIFICATION SCHEMA
GENERATE:PATH = PATH_LIST sucn tnat
FEASIBLE:PATH =>
FOR ALL TEST_PATH ELEMENT OF PATH LIST
(1engtnTTEST_PATH) = 1+lergtn(PATH) S
t1r(TEST_PATH) = PATH 5
Opg(last(TEST_PATH))]

waoere GENERATE:Y -> Rp suca that Rp = <¥>
and Ope = subset of Op suczh that all coajuncts
of Op wnicn directly restrict decision
elements are in Ope

Heuristic: To identify Op elements tor Opg select
tnose in which either
1) a single decision element is restrictea
by -constaat values OR
2) a sinegle decision element is restricted
by an equality

SOLUTION SPSCIFICATION SCHEMA
SOLUTION:TEST_PATHE = b such that
b <=> [FEASIBLE(tl1r:PATH) => Ops(TEST_PATH)]

wnere SOLUTION:Y -> E sucn tmnat Rp = <y>
and Ops = subset of Op such that all conjuncts
not in Opg are in Ops

FEASIBLE SPECIFICATION SCHEMA
| FEASIBLE:TEST_PATH = b such that
b <=> |FEASIBLE(tlr:PATH) => Opt(TEST_PATE)]

| waere SOLUTION:Y -> B such that Rp = <I>

and Opf = subset of Op sucn tnat all conjuncts
which relate 4ecision elements ani
not in Jpg are in Opf

FIGURE 4
Reduztion Rule Specitication Scnemas

1. Problem Representation

Tne required probdlem representation was developed in

Figure 1 (see paze 2¢).

43

-

2. Problem Specification
The components of the formal problem spe-itication
may be extracted directiy from tnhe probdlem representaticn.
The domain of the problem is tae type of the varianie input
parameter., For the K QUEENS problem thne variabdble parameter
is K, tre mnatural numbder denoting tne size of the
cnessvoard., The domain is tnus N, the natural numters, Tne
range ot the probdlem is tne type of the solution structure.
For the K QUEENS problem tne solution 1s expressed as a
sequence of lists ot natural numbers. Each list represents
one solution and tne sequence tists ali solutions. Tne
domain and range specification can tnus be specitiea as:
K_QUEENS:N => <LIST(N)>
Tne output condition is derived from the gproolem
constraipt structure, It 1s simply the conjunction ot all
constraints in tne problem representation, formulatec in an
appropriate logical specification. Using X to reprecent a
solution and PATH_LIST to represent tne seagqueénc® of &ll
solutions the output condition is:
FOR ALL x(i),x(J) IN X, X IN PATE_LIST
(1#3 => x(1)#x(})) &
1#j => avs(i-j)#avs(x(1)=-x(3)) &
1 =< x(1) =< ¥|
£ lengtn:X = K
The input condition is derived from tne observation tnat the
program snould produce valid output reeardless ot the value
of tne input, as long as the input 1is of the proper type.

Tnis type restriction is already provided by tne domain

44

desigration. The input condition is thus vacuously true and
reduces the truth of the input/output 1implication t» tne
truth of the output condition. Tne complete specification

1s given at Figure 5.

K_QUEENS:K = PATH_LIST suca that
true => FCR ALL x(1),x(j) IN X,
X IN PATH_LIST

[1#) => x(1V#x(j) &

1#) => avs(1-j)taes(x(i)-x(j)) =&

= o (O E=NIN

& lengtn(X) = K

where K _QUEENS:N => <LIST(N)>

. s = == .- -

FIGURE 5
K QUEENS Problem Specification

3. Function Specification

W#e will now apply our reduction rulie to tne ¥armal
K QUEENS problem specitication. The application ot the rule
will 1instantiate tne specitication srnemas for the lower
level functions and produce a bacKtrack scnema with torral
specifications for the lower level functions., Jur
discusstian 9f the ruyle application will 1llustrate tne
pattern matcaing process. Any refereace to tne problem
specitication within tne tunction specification scnemas will
c3use 3 search of tne problem specification for tze ascired
comporents. These corponents will tnen be inserted into tne
instartiated function specification. For example, tae
GENERATE scnema specifies the range ot GENERATE to be the
range of the problem specification. In instantiatine tne

SENERATE specification the range in the proolem

45

O

specification is extracted and i{insertea 1into the fvaction
specification. In tnis manner, all lower level ¢function
specifications are produced.

For the K QUEENS problem the specitication 1s
listed in Figure 5 and the reduction rule Schemas are listed
in Figure 4. We begin the rule application by developing the
specification of GENERATE. Tne scnema iists tne domain as:

Dg = Y where Bp = <I>
Since tne problem specification lists Rp as <LIST(N)>, Y
matches LIST(N) and we nave Dg = LIST(N}. Similarly, the
matcn Yor Rg produces <LIST(N)> as tne range for GENLERATE.
The schema ianput condition is listed as true, wnicn requires
no match since there iS no reterence to the Dproblem
specification. The output coadioa references th2 probdblem
specification only in the ccnjunct:

Ope(last(x(1)))

where Ope = subset ot Op which airectly
restricts decision

Employine our neuristic for {dentifying constraizts wnicn
iirectly restrict derisions, the constraint:

FOR ALL x({1) IN X
(1 =< x(1) =< K]

meets tae first case and 1is inserted 1into tne GENERATE
specitfication. All compenents of the specification zave now
peen produced and are included in Figure 6.

Schema ianstantiation ror the SOLUTION tunction is

accomplisned with tahe same procedure. The c<pecitfication

46

— e

-

— e

schema lists tne domain or SOLUTION as:

Ds = Y wnere Rp = Y 1
The problem specitication 1lists Rp as <LIST(N)>, wnicn
allows a match Dbetween Y and LIST(N). List(N) 1is tnus
identified as the domair. Trhe schema speciftication tists B
as the range, which requires no match with the problem
specification, Tne input condition also remains true, since
no problem reference is required. Thne output condition does
retference the problem specitication in:

Os = Ops{TEST_PATH) <=> b

wnere Ops = subset of Op not includea

in Ope

Ye tnus extract all conjuncts of tae prooiem output
condition not listed in tne output condition for GENERATE
and place tnem in tne output condition ¢or SOLUTION. These
conjuncts are:

FOR ALL x(1),x(j) IN X

{123 => x(1)4x()) &
i#) => abs(i=3)#abs(x(1)=-x(3))]
& lenegtn:X = K
The rcomplete specification ¢or SOLUTION is listed irn Fisure
5.
The procedure for FEASIBLE is tne same. The domain

and ranee schema specitications are the same as for SOLUTION
and produce a domain of LIST(N) and a ranze ot B. The input

condition remains true. The output condlitior specification

of:

47

Of = Opf(TEST_PATH) <=> 0
wnere Opt = subset of Op whican includes aill
conjuncts wnich relate elements
of decision and are not in Opeg
raferences Op and forces identitication ot those constraints
not in GENERATE wnich address the decision elements. From
tne problem specitication tnese are easily identified as:
FOR ALL x(1),x(3)) INX
[1#) => x(1)#x(j) &
abs(i=j)#abs(x(i)-x(3))]
Tne complete specitication tor FEASIBLE is given ir Figure

5.

To furtner iillustrate tne program syntaesis proress
we will develop programs to s3atisfy tne specitications tfor
the lower level tunctions. The development process will rot
be detailed bdbut will be onrly senerally described.

Development ot the tunction GENERATE will ©bpe
i1iscussed first. Satistaction ot this specifi~ation can te
accomplisned by a program waica constructs a sequence of
lists. FEacn list is constructed by apperdinrng one natural
number to tnhe input patn. Tne npaturdal aumbers must fall
tetween one and XK. A simple proeram whiczn accomplisnes tnis
LS

GENERATE:FATH =
AUX_GENERATE:<PATH, 1>
whera
AUX_GENERATE:<{PATE, COUNTERD> =
(EQUAL:{COUNTER, K> => APPENDR:<PATH, COUNTER>;

APPENDL: | APPENDR:<CPATE, COUNTERD,
AUX_GENERATE: [PATH, ADD:<1, COUNTER>))

48

E_QUEENS:K =
BACETRACK :nil

:

]

i

d

! wnere

! BACKTRACK:PATH =

d /APPEND

| (& (lambda<TEST PATH>

! {(SOLUTION:TEST_PATE => ID:TEST_PATE;

! FEASIBLE:TEST_PATE => BACKTRACK:TEST_PATE;
i NIL)})

5 (GENERATE:PATH))

]

GENERATE:PATH = PATH_LIST <sucn tnat

FEASIBLE:PATF =) FOR ALL TEST PATH IN PATH LIST
' [lengtn(TEST_PATE) = 1+length(PATH) A
: tir(TEST_PATH) = PATH &
1 <= 1last(TEST_PATH) <= K]

wnere GENERATE:LIST(N) => CLIST(N)>

SOLUTION:TEST_PATH = b such that
b <=> {FEASIELE(tlr:TEST_PATH) =>
FOR ALL x(i),x(gT IN TEST_PATH
(t#5 => x(1)#x(y) &
1#j => avs(i1-j)#aos(x(1)-x(j))]
S lengtn(TEST_PATH) = £}

wnere SOLUTION:LIST(N) => B

FEASIBLE:TEST_PATH = t suca tnat
b <=> {FEASIBLE(tlr:TEST PATH) =>
FOR ALL x(i).x(g? IN TEST_PATH
(1#) => x(it)#x(y) &
1#j => abvs(i-#aos(x(L)=-x(3))!
where FEASIBLE:LIST(N) -> B

FIGURE 6
K QUEENS Program Specification

e e . = s ——

The next functiorn to be developed 1is TFEASIELE. ¥e
wisn to develop SOLUTION arter FEASIRLE sirece SOLUTION
properly 1includes all the corstraints in FEASIBLE. This will
allow 1inclusion of FEASIBLE witnin SOLUTION. FEASIRLE s

expressed as a conjunction of two constraints, Thi's

e— - -

translates into tne AND of two computabie ncolean
expressions. Tre first expression compares tne values of
all elements in the parameter. Tne input condition tells us
that all elements ia tir:PATH meet this concdition.
Therefore we only need compare the last elemeat with 1tne
rest of the elements. The second expression compares tine
absolute values of tne ditterence of the row positions énd
the difference o¢ the column positions. Since we know trhat
tnis coniition nolds for all elements ot PATH except for tae
last, we only need test the last element. Tnis zives us tne
program:
TEASIBLE:PATH =
AND: [ROW_MATCE:PATH,

DIAG_MATCE:PATH]
wnere
ROW_MATCH:PATH =
(NULL:PATE -> true;
AND : [NEQUALS:[LAST:PATH, 1:PATE].
ROW MATCH(TL:PATH)!)
DIAG _MATCH:PATH =
(NULL:PATH -> true;
AND: INEQUALS[ABS(-:(TL:PATE, 1:PATH|),
ABS{-:[LENGTH:PATE, 1))],
DIAG _MATCH(TL:PATH)])

The derivation of tne functiorn SOLUTION 1s row
simple. SOLUTION contains toe conjunction oY three
constraints. Two of tanese are includec in TEASIRBIE, ¥e can
include FERASIBLE and tne tfinal constraiat in an AND function
to ~omplete tnis proeram. Tnis gives us:

SOLUTION:PATH =
AND:[FFASIBLE:PATH,
EJUALS:[X, LENGTH:PATH])]

after derivation or these programs tne syntnesis system

5¢

would replace the specitfications of Figure £ witn tnese

programs and the process would be complete. -

D. THE PROCESSOR SECQUENCING PROBLEM
Tne Processor Seguencing Problem 1s a Known NP complete
problem (Ref. 2¢). It ditffers from tne ¥ QUEENS proolem in
that the path elements under examination at any stage ot the
process n3ave a numter of assoclated progperties and tae
constraint relationships are expressed predominantly 1in
terms of taese properties. The solution to tnris prodlem
will 1illustrate the use 0¢ global data irn ©vacxKtrasging
algerithms and the incorporation of constraints inrnto the
tunction GENERATE,
1. Problem Represenration
The Processor Sequencing Proolem (PSP) may be simply
stated: Given a set of tasgks tO0 Dbe rua on a sSinele
processor, witn fach task naving an associatea reiease time,
processing time and deadline, do0es there exist a scheduling
sequence wnlcn will complete all tasks prior to traelr
ieadline? Tne associated properties place & cseries of
constraints on tne tasks, Tne release time 1s an earliest
possible availladiiity constraint. No task is avallaple to
run before its release time. Once selected for execution,
2ach task will consume exactly the amount ot time speritied
by. its processing time. Tne deadline places a latest

completion constraint on eacn task.

51

Tne tirst tas£ 1in representing thls probdblem is to
decide on a decision structure. One obvious componernt-of a
decision 1is which tasgk to run next. But tnis 1is ~rnot
complete in that more information is required about
scheduling this task tnhan mere selection provides. The time
the task is scheduled tc¢ run is also a crucial part of tae
decision. This time is not fixed ©based on tne previous
dezisions in the partial solutiosn vector, but depends on
additional intormatioa. For tais reason, the decisions made
for tals problem can be represented by a pair, the first
alement being the task selected and tae second =lement belne
the start time of the task.

The second representation task is to transform tae
decision structure into a solution structure. Tn2 solution
structure will <consist ot a Sequence ot decisions, eaca
de2cision ovpelng of tne form specitied by the 4dezision
structure. Thus a solution will nave the form:

& (YO X02) 0 wde g BlM))

wnere eacn x{(i) is or form
(tasg(i), time(i))

Tne final representation task concerns the problem
constraints. A aumber ot ronstraints relate the elements of
the possible solutions. Thne rirst we will ronsider {s the
deadline restriction imposed on each task. Whether a task
meets its deadline depends on two Yactors: the tasgk sStart
time and the task processing time. Tne start time is an

elerent of the decision being tested. The processing time

52

and deadiine time are constant values associatea with ecaca
instance of tne problem. A task meets its deadline -if tne
sum of the start time ani the processing time i< le<s tnan
the deadline. Tnis can be expressed in computatle form as:

FOR ALL x(1i) IN X
{deadline(tasg(i)) >= start(i) + time(task(i))]

where deadline, time are problem constants
Another solution element constraint is identitie2z by tne
fact tnat no task may be scheduled twice. Thus each tasg in
the sequence must be distinct. We can represeat this by
noting tnat if the position of two tasks in the sequence are
distinct, tnen the tasks must also be distinct. Trnis can bde
sxpressed as:

FOR ALL x(1),x(J) IN X
[1#3 => task(1)#tasg(j) |

There are also constraints on tae start time of 2arh task.
These 1limit the start time to a point after both the
completion time of tne previous task and the release time ot
the task uander consiczeration. It +¢ollows that tae start
time may ©be expressed as tne maximum ot tne two
constraiats., Ascagming a lan2uare fuynction to <celect tne
maxirum oY two 2atural aumbers, tnis constraiat may ©oe
erpressed as:
FOR ALL x(1) IN X
Istart(i)=max(release(tasx(i)),
start(i-1)+process{task(i-1))]

where release, process are problem constants

The rinal constraint 1{identifies a solutinn from potential

solutions wnich meet all other constraints. It atl other
constraints are met and tne number of elements of the
proposed solution equals tne number of tdasLs, then we &npow
that all tasks are included in the sequence. Tris ¢final
constraint can be identified as our solution constraint and
is expressed as:

LENGTH:X = K

The complete problem representation is g£iven in Figure 7.

— - — -

DECISION STRUCTURE
dececision(i) = ith task to run
start time of task

SOLUTION STRUCTURE
<X> where eacn X
where x(i) =

(x(1), x(2), ... ,x(K))

Ztasx(ii. start(i))

:

]

‘l

[}

’

:

:

|

[}

|

i
CONSTRAINT STRUCTURE |
element constraints l
FOR ALY =(1),x(3) In X '

(1#) => task(1i)#task(})] i

FOR ALL x(1) IN X i

! [deaaline(task(1i)) >= !
start(1) + process(task(i)) | :

FOR ALL x(i) IN X |
[start(1) = max(release(task(i)), !
start(i-1)+process(tasg(i-1))) | !

solution constraint {
' lengta(X) = ¢ |
5

where release, process, deadline are proodolem constants

FIGURE 7
PSP Prodlem Representation

2. Problem Specification

As witn tne K QUEENS problem, tne four components ot

tne PSP formal problem specitication can be easily cerivea

from the protlem represeantation. The domain for tne PSP

54

problem is the type ot the variable input. 1In tnic case,
the variable iaput is the number of tasks, X, a rnatural
numper, Tne solution structure should provide us tne
range. 1In this case, a sinele solution is structurea as a
list of pairs of natural numbers. The tirst element 0f thne
pair is a3 task identitier and the second element is a start
time for that task, Since tne problem requires a cequence
of all solutions, the proper =r~ange is a Sequeiare ot lists.
We can express this as:
PSP:N => <LIST(NxN)>
The problem output condition is immediately derived
from tne constraint structure. It is merely the conjuaction
ot all constraints we have identiried. Tne expression of
tnis output condition is more complex tmnan for the ¥ QUEENS
protlem because tne constraints rely on constant values
detined ty tne problem instance. Our notation for 2eclaring
these constant values will be tne wnere aeclaratisan of cur
programming language. Tnis declaration in effect defines a
Scope of visibility for tne constants, making taem gaown to
the coastraiats. Thae probdblem output cordition is:
POR ALD %(i)om(g) IN X
Lizd => tvask(i)#task(y) &
deadline(task(i)) >=
start(1i)+process(task(i)) &
start(i)=max(release(tas«(i)),
start(i-1)+process(task(i-1)))J
A lenegth:X=K
where reiease, process, deadlire are program comstants

For reasons tne same as witn tae K QUEENS preolem tne input

55

-

condition is vacuously true. Tne complete specitication is

given in Fieure 8. -

TASK_LIST suchn tnat
> FOR ALL x(1),x(y) IN X, X IN TASK_LIST,
and x(1) = (tasx(i),start(i))
(12§ => task(i)#tasx(j) &
deadline(task(i) >=
start(i)+process(task(i)) &
start(1) = max(release(task(i)),
start(i-1)+process(task(i-1))) |

PSP:K
i true

§ length(X) = K

| wnere PSP:N => <CLIST(NzN)>
and release, process, deadline are problem inputs

-— L —

FIGORE 8
PSP Problem Secification

3. Function Specitrication

We now apply our reduction rule to proauce a
backtrack program with trormal specifications for tne lower
level functions which wiil sclve the PSP probolem, To 20 sO
we use the scnemas of Figure 4 and the tormal prcclem
specification of Figure &, We pbeegin with tne speci{tication
of the function GENERATE. The specification schema lists the
iomain as ¥, where Rp = <YI>, Matcaine this aeainst tne
problem cpecification provides Rp as {LIST(NxN)> wnicn gives
Y as LIST(NxN). Tnis s placed as tne domain ot GENERATE.
Tne scnema lists the range as Rp so we nave:

GENERATE:LIST(NxN) => LLIST(NzN)>
The schema input condition does not reference tne protiem
specification S0 it is <copied into the GENERATE

specirication, In a Lige manner tne first two comjuncts of

56

tne schema outpuct condition are copiea into the GLNERATE
specification. The tinal conjurnct Treterences Opz, the
subset of the problem output conditions whi~h directly
restricts a decision element. Examining the preblem
specification under tne guidance of our neuristic procuces a
match with the rconjunct:
FOR ALL x(i) IN X, X IN TASK_LIST
and x{(1) = (task(i), start(1))
[start(f) = max(release(task(i),
start{i-1)+process(task{i~-1}}) |

and case two ot the rule. Case two prescrides the iaciuvsion
of problem constraints waich in the GENERATE ftunction 1f a
constraint restricts a sinegle decision element ¢ty an
equality. In this case start(i) is the decision element and
it is restricted by an equality. Case one produces no mat~a
since no constraint bounds a decision element by constant
values. The schema entry tor Opg 1is replaced by the
conjunct above producirg the full specification ot Fieure 9.

Tne same procedure 1s used to develop tae formal
specitication for SOLUTION. Tne scnema specifies the domain
as Y wnere tne problem range is <Y>, The problem range is
<LIST(NxN)>, wnicn produces a Y matcn of LIST(NxN), waich we
taxe as tne domain of SOLUTION. The schema range does not
reference the problem specification, so it 1is copieac into
the ftunction specification. Tne same is done tor the
function input condition. Tne <scnema output condition
references Jps, the subset ot the probvlem output cordition

#nicn is not included in Opg. From tne discussion 1in tne

57

last paragrapa tais reduces to the tirst, second and <tfourtih
conjuncts in tne problem output corndition. Replacine Ops
witnh tnese conjuncts produces the specitication otr Fieure 9.

Tne specification <for SOLUTION 1is 1identical to
FEASIBLE, as snown in tne schaemas, with tne exception of the
output condition. In tnis case, tae reference to Opt ir the
schema must be replaced by all conjuncts of tze Dbprobdlem
output condition wnicn relate decision elements and are not
i2 Ope. Witn tnis problem tne last conjunct does not relate
decision elements since it addresses tne solution as a
whole. The taird construct is included in Opeg. Tnils leaves
toe first two coanstraints to be subdbstituted tor Opt. Placing
taese constraints into tne schema produces the <pecitrication

of Figure 3,

E. SCHEMA LIMITATIONS

The reduction rule developed 1in tais chapter nas a
rumoer of limitations. Tne principal 2e¢iciency is that it
is neuristic ia nature and not an algoritam, The underlyine
reason for tnis 1s tne failure of tne rule to incorporate
any proof mecnanism in its actions. It is believed trat a
proot mecnanism may ©bte constructed basea on the aesign
method developed above, Reduction ruies for tne simple
1ivide and coryuer control strategy have teen developea by
Smitn ([Ret. 21] waicn employ a prover theorem as tne basis

for specification aevelopment.

5&

———— — -

PSP:X =
BACKTRACK :nil

wnere
BACKTRACE :PATH =
/APPEND
(oK (lambda<TEST PATH)>
{ (SOLUTION:TEST_PATH -> ID:TEST_PATE;
FEASIBLE:TEST_PATH -> BACKTRACK:TEST_PATH;

NIL)})
(GENERATE:PATE))

GENERATE:PATH = PATH_LIST suck that
FEASIBLE:PATH => FOR ALL x{(1),x(3) IN X,

X IN PATH_LIST
and x{1) = (task{i),start(i))

{iengtn(X) = 1+lengtn(PATE) &

tir(X) = PATH A

start(i) = rmax(release(task(i)),

start{i~-1)+process(task(1-1)))]

wnere GENERATE:LIST(NxN) <> CLIST{NN)>

SOLUTION:TEST_PATE = b sucn taat
b <=> {FEASIBLE(tlr:TEST_PATH) =>
FOR ALL x(i).x(%) IN TEST PATH
wnere x{(1) = (taseT{)., start(i))
(1#3 => tasg(i)#task(j) &
deaaline{task(1i)) >=
start!{i)+process(tase(i)]
& lengtn(TEST_PATH) = X}

where SOLUTION:LIST(NxN) =D B

FEASIBLE:TEST_PATH = b sucnh that
b <=> {FEASIBLE(tlr:TEST_PATH =>
FOR ALL x(1),x{(3) IN TES
woere x(i) = (
(1#5 => tasg(i)#tasx(y) &
deadline{tasx(i)) >=
start(i)+process(task{1))}}

T_PATH
tasg(1), start(1))

wnere FEASIBLE:LIST{(NxN) -> B
wnere release, deadline, process are program constacnts

FIGURE 9
PSP Program Specification

A second limitation of tae rule s the 1inetficiercy
inherent 1in the ©obacktrack schema., As evigencea oy our
examples tnere 1s$ mucn duplicate computation retween tne
SOLUTION ana FEASIBLE predicates. Tnis could irdicate trnat
ettiziency 1is Ddetter served dy evaluating tne FEASIBLE
predicate tirst and then nesting a diminisned <form of the
SCLUTION predicate witnin tne action clause of FEASIBLE,
Althougn our design method would allow tnis, it restricts
tae schema to probolems where the FEASIBLE -~onstrainat
includes only restrictions witain SOLUTION as well. It is
not known wnetner tals is a general condition with ¢provlems
suitable tor tne bacgtrack solution tecanique and tze mcre
general scnema of Figure 3 was developed iastead.

A gzeneral efticiency corncern 1in tne development o5¢ any
bacxtrack aleorithm is tne proper sudbdivision of constraints
between GENERATE and the other tunctions. Obtviously. any
constraint within GENERATE tilters noareasitle »partial
solutions ftrom SOLUTION and FEASIELX. How muca total
computation 1is saved is not clear, zowever, The total
aumver of nodes examined by tne predicates is less woen more
of tne constraints are included within GENZRATE, but tae
computation required by GENERATE 1is greater. A gereral
conclusion trat seems valid 1s that some work is savec i¢
there {s also duplicate computation, &s alscussed abdove,
petween SOLUTION and FEASIELE, out it there is no duplicate

computation, thenm each extension at each level visited is

5¢

tested once 3gainst eacn conmstraint. A more *avoravle area
for related investigation is in program transformation.
Tnis work may 1identify wnen backtrack programs produce

duplicate computation, ang transform sucn pregrams to

eliminate the duplication.

6l

-

V. AN EITENSION TO BACKTRACK

The backtrack alsoritam has traditioralily been employed
to solve problems of the type described in Cnapter III.
Research on the strateey has been orisnted towards
efficiency improving techniques, ([Rer. 22, 23] oproeram
proving [Ret. 24), problem representation tormalisms [Ret.
25) and control structure apstraction [Ref. 26, 27). Tae
problem of extending the strategy for solution of a
ditferent class of problems nas not been siganificantly
addressed. The seccnd reduction rple proposed by this paper
axtends the tacktrack strategy by adapting it tor solution
of the prodlem reduction problem type. The resuvlt 1is a
general purpose schema with a theuristic desigzn method fror
lower level <function specification. As tnis resuit 1is less
rooted 1in existing knowledge, tne design metaod presented

will be described in =2eneral terms.

A. PROBLEM REDUCTION PROEBLEM REPRESENTATION

A problem reduction problem representation 1S another
formalism for symbolic problem description. As with tne
state space representation discussed in Caapter I1I,
representation of a problem witn a problem reduction tformat
will impose & particular =zrapaic structure onto tae
problem. With this structure we can employ a erapn search

procedure to search fer a solution. T™e goal 1in tnis

62

chapter 1s to adapt the bacxtiracgk strategy to Search the
problem reduction grapn. In this paragrapn we will-first
develop the representation, themn depict tae grapn structure

produced by the representation, and then illustrate a sample

problem representation.

1. Problem Represenmtation

There are thnree ey componeats of a prodlem
reduction representation. The ¢tirst componert {is tne
problem state. Tais 1s a symbolic description ot the state
of the problem at any point {2 the searca process. Tne
initial probdiem state is 3 description ot a eoal which is to
be satisfied, As the search process executes, the iaitial
goal state wiill be decomposed 1into onrne or more suteoal
states, wnich, wnen ©Dbotn are satistied, will cause txhe
orieinal gral to bte satisfied. An example of this 1is tne
symbolic integration prncess. Given a goal state of tae
tform:

fie(x) + 2(x)) ax

where t,e2 are gxncwn tunctions
A solution to tais problem is a symoolic representatior of
tnae integral. An initial decompocition mav produce tae two
subgoals:

Je(x) dx

Jelx) dx

where f£,2 are gknown functions
Solvine both ot these two subgoals wiil lead to tne solution

of the original prodlem. In tnls case, the two supvsolutions

must te acded.

63

In order to decompose states and compose scluticas
some means must bte provided for these actions. The s=cond
component ot a problem reduction reprecentation ic a set of
reduction rules., £Each rule will act on a egoal description
and provide one or more decomposed subgoals. The rule also
provides a metnod for combining solutions to subgoals into
solutions to tne original goal. Tne most signiticant aspect
of rule application is tnat all subgoals must te solved for
the orieginal 204l to be solved. Ia our symbolic iategration
example the reduction rule appliea may be ot tne ferm:

If Inteerand i1s torm ¢(x) + 2(x)

wnere x 1s variable of integration
tnen

solve r(x) ana 2(x)

compose solutions with +
It 1s important to note tnat toere 1is an dpplicaoniiity
condition (If) ana a conjunctive solution.

The represertation we nave descrictea taus tar alisws
only goal 42-omposition. The thirde component of tae
representation allows for a solution o¢f a subset of 20als we
will call primitive. Tais component is a set of rules, also
called primitive, waicn, when applied to a primitive egnal
will return a solution. In our sympbolic integration
example, one primitive rule may bve:

I£ Iateerana is of form cos x
where x 1s variable of integration
then return sin x

The primitive operators provide tae only means ot fincing a

solution in a probvlem reduction reprec<entation. They are a

means to represent those goalils whlca we Know how to dire-tly
solve, i
2. Apd/0r Tree Representatjon

The grapa structure imposed by this representation
is similar to the structure of a state space tree, but
contains an additional node type. We will represent goal
descriptions by noaes and rule applications by arcs. The
path #rom the root of a tree to a subgoal description
descrives the sequence of ruile applications wnaicn proauced
the 2oal description. Given a node (zoal description) tnere
is a range ot reduction rules which may be appliea, This
range 1is represented by the set of arcs leavine the node.
The complicating factor ot the problem reduction
representation 1ies 1in reduction rules waicn decompose 3
goal description into two or more subgeals. The
relationsnip between taese subgoals 1is tigatly constrained,
representing tae fact that botn of taese subgoals must Dbe
solved to solve tae go0al. This logical AND relationsnip
~ontrasts with tne subgoals produced ty tae other reduction
rules. Satistaction oY tne subgnals proauce2 HY any
redqustion ruls will satisty tae goal. Tne grapnic solution
is to tie together the arcs representineg application of one
rule with a nyperarc. Tnis creates 2an AND ncde, wanicn
signifies that all descendants or the AND node must be
satistied, The application of distinct rules are

represented by OR nodes, or arcs not cornnected bv nyperarcs,

&5

waich represent tne logical OR nature ot their
relationship. Figure 19 depicts a sample searca space.
Given an initial zoal represented as node A, tnree recucticn
rules 2~an be applied. Rule 1 proauces subgoals B and C,
rule 2 produces subeoal D and rule 3 produces sutgodals E and
F. 2 can be solved Dby solving eitner set of goals, B and C,
or D, or § and F. Ultimately, it B ana C are to te solved
then G or H, and I must be solved. Ir D 1is to te soivea,
then J and K must be solved. Ir E and F are to te solvec,
then L and M and N must be solved. To solve tnhis problem
the search process must search tor subeoals whicnh can be
solved by primitive operators anda tie togetner the Sseparate
patas represanted by and nodes. Unlike tre state space
search, the result of this search process will be a solution
tree. From any node the separate branches represeat the
different sutgoals produced by a single rule application.
As an example, Fieure 11 depicts the tour sSolution trees
present in Figure 1¢ i€ all leaf nodes ~an te solved.
3. Ap Example Representatian

Tne example we present nere anra cdevelop for tre
remainder of tne cnapter is @ simple aritnmetic tzeorem
prover. Given a goal statement ian terms of an aritametic
assertion ia2 any numbter o¢f variables, and a naumber of
propositions about tnose varianles we Know to be true, can

we prove the Statement is true. In this paragraph we will

develop 3 problem reduction represantation for the problem,

and in later paragrapns we will adapt the backKtirack coantrol
strategy to search tane representation detined AND/CR tree

and retura a proof ot tnhe assertion.

————

G
FIGURE 12
AND/OR Grapn

i S E e e e e T ‘
! A A A A :
I]
: :
I |
i .'
! ,f/\ .
: H c B e D B F :
] L]
) .
; i
| G I E I g 4 | M N d

]
E |

———— —— ———— T S s S . 2 T i S e S T S S S

FIGURE 11
Solution Graphs

To represent our problem witn a protlem reauction
tormalism we need to 4efine tane taree components of tne
representation, The tirst componernt is the g9al

description. The inttial goal is an aritnmetic assertion.

57

¢y

A suitadble goal description 1is tne assertion itselr. The
result of applying a reduction rule will be ore o¢r. more
subgoals, eacn of wnichn should be a simpler aritametic
assertion. For our problem representation we <an express
tnis as:
GOAL DESCRIPTION

form: aritametic assertion

initial: [B* (A + C)J/E > B
The initial eo0al description represeats tae particular
problem instance to solve.

The next component we descrivpe 1is tne set of
primitive rules. Tnese rules need to be described petore
the reduction rules because tney provice the basis towards
whizch the reduction rules sanould simplify tne goal.
Primitive rules represent tne gaowledge possessed atout tae
problem. They specitically apply to goal descriptions tnat
can be dirently solved, In the theorem prover, tnese Trules
are expressions of the propositions waich are knowr to te
true, For the protler instance we are concerned witn tnese
ire:

PRIMITIVFE RULES
A >

OO W
VVVV
mesS s

To complete our problem representation we need only
specity tne reduction rules, Tne purpose of a reduction
rule is to simplify 3 goal state which capnot te directly

solvea dv 3 primitive rule. It follows that reduction rules

ee

embody general knowledge about problem area relatiocashios
wnicn allow transformation of goal descriptions into one or
more simpler descriptions. In simple theorem provicz these
relationships can be describea witn logical 1implications
wnicn represent eeneral known theorems. Tney car be statec
in the form:

P1 & P2 & ... & PK => P¢
where P4 represents a e20al anea Pl, ... LPK represent
subgoals. It PY can be matched against a goal <cdescription,
then subgoal P1 ... PK will be produced. We will use tour
rednustion operators for the theorem prover:
REDUCTION OPERATORS
x>0 S y>€ => x*y > ¢
D & yO2 =D x+y D 2
Y & y>z = x¥y > x*¥2
xD2%y A yO¢ => x/y > 2

Tne complete problem representation is given ia Figure 12.

GOAL DESCRIPTION
torm: aritnmetic expression
tEdcday: 3 XA «+ o 7B > B

PRIMITIVE RULES
AD>29Q B>
c >¢ E>
C>¢E%

@
¢

REDUCTION RULES
DY S YO8 => X%y > ¢
D0 K y>z => X+y > 2
D8 S Y>2 = ¥y > ¥z
X D> 2%y S y>0 => x/y > 2

- ——— - - ——

FIGURE 12
Theorem Prover Protlem Pepresentation

89

B. SCHEMA DEVELOPMENT

In developing the backtrack schema tor a protlem
reduction representation the procezure described in Cﬂapter
1v will again bde followea. Tnis procecure requires
description of the expected input, description ot the
desired output, identitication of tne orerations requirez to
transtorm the input to the output and tanen translation of
the operations into Lower level ftunctions and appropriate

functional forms.

1. Tae Expected Input

o
[

S n the state space bacKtrack schema a
represeatation of a path is expected as iaput. Tais patn is
a4 symbolic description ot the sequence of rule aprlizations
wailcn nave reduced the initial goal descripticr to the
‘urrent eo0dal description. Since tne patn does n0t incliude
the current 204l description, this must also pe inclucee ip
the expected input. The resulting input is a ceguence
consistineg ot a path and a symbolic representation of tae
current goal.,

The relevant cnaracteristics of tne input are two.
Tne <#irst 1is ttnat all rulec in tne path nave neen
successfully applied. Tne secona 1s thet tnis current goal
miy be vprirmitive. This situation 1is a resylt o¢ tae
Dacktrack strateey applyine the SOLUTION bredairate Dbetore
tne FEASIBLE predicate. Tnis will be furtner ciscussez in

the section 9n ircput transtormations.

7e

2. Desired Qutput

The output desiredq trom a protlem recuction
representation 1is otten dependent on the probler. For
2xample, the desired output for the symbolic inteeration
problem 1s a symbolic description of tne integral. With the
simple tnheorem prover we desire proof of the input
assertion. A commonaiity ©Dpetween tnese and all proolem
reduction representations 1s tne sequence of operaticns
pertormed to arrive at a solution. For tnis reason tae
2eneril output desired will bpe a solution graph consisting
of the reduction rules and primitive rules applied to solve
tae problem. The return from thais most g£eneral case can e
transtormed into tne desired output form.

3. Inpur Iransforrations

In describding thne iaput traastrormations requirea we
will stay as close as possible toc the simple ba~gtracx
schema developeda in Chapter IV. The goal is to procuce a
scnema weicn can be applied to eitner tne state space
representation or tne problem reduction representation., Tne
iesien method will iiffer pased on tne probvlem
representation. To do so we will identify tnose aspects ot
the simpls backtrack schema which require enhancemezt to
search an AND/OR grapn, and develop those ennancements in
either tne scaema or the 1esign metnod.

Tne initial transformation regquired is to extend the

path parameter. In tais czase, the extension consists ot

71

'R

appendine one more reduction rule to tne patn of rules
previously applied. This extension d40es not apply the-ruije,
but lists it as one P0ssitle alternative,. The result ot
this transformation will pe a new sequence of path, sState
pairs., Each pair represents a different alternative
€xtension to the path of applied rules,

Tre second transtrormation 1s tne conditional test.
The SOLUTION predicate wiill again be executed rirst. Ir a
prqblem reduction representation a solution is not
recognizedmﬁi “examinine the sequence of decisions {rule
applications), tut by examinine the surrent 2oal
description. Upon recognition of a sclution, tne action is
to return tne sequence of Tules, ane not tne goal
lescription. If tne SOLUTION predicate fails ther tne
FEASIBLE predicate will pe executeq, Tais opredicate is a
test of tne patn to determine it 3 solution can teasiovly bpe
1iscovered tarouen éxpénsion 2f the path. Tne Clearest way
to test tnis in a probienm reduction representation is to
test the reduction rule appendeq by tae patn expansion
transformation. It tnis ruie can be applied to tne g9al,
then further subegoals can be procduced wnica mav tead to
solutions. It the rule can be applied tnea tne appropriate
actions are more complex than tnose in the state space
schema. The obvious first astion is t0 apply trhe ruie and
produce new subdgoals. It only one subgoal is proauced we

nave created an OP ande. In tnis case tne arpropriate

72

action is to recursively call the backtrack function witn
the new subegoal and patn. If more tnan one subgeal is
produced an AND node nas teen created and more complex
action 1is required. I# an AND node is created tnea a
separate path is created for eacn descendant of the ncie,.
To solve the AND node eacn patn must return &a soiution. To
solve this problem by a bacEtracg searcn we must Searcn eacn
patn and compose tne solutions. I¢ any patnf returns nil,
the result of the node wiil be =2il,. The order o¢
transformations on AND node 1is thus to apply tne Trule,
create separate <PATH, GOAL> pairs for eacan subgoal,
tacktrack on eacn pair and finally compose solutions.

The tinal transtormation 1s to *ilter the il
soiutions returned by the examinations of the exparnsions.
Tne value returned will consist of a 1ist of solutions.

4, Schema Transliation

To derive a schema from tne required traastormations
we will again proup the transtormations into lower level
functions conbined with the appropriate <functional rorms.
The first transtformation 1is tne generation of expalied
paths. Tnls transtormation <can again te accompiisned poy a
sinzle function GENERATE. Ip oUr janguage notation tals te:

GENERATE:<CPATH, GOAL>
wWnere Une parameter PATH is a representation of the seyu€nce

of rules applied, and the parameter GOAL is a descriptioz or

tne current goal.

73

Tne second transformation is the conditional testing
tunction. ASs witn the state space represéntation, tRis
tunction is applied to one element of the output ot GE&EPATE
and the results are return<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>